Normalizer
-
데이터 변환_스케일링machine learning 2024. 2. 25. 16:17
데이터 스케일링(data scaling)은 데이터 전처리 과정의 핵심 단계 중 하나로, dataset의 features를 특정 범위로 조정하거나, 데이터의 분포를 표준화하는 과정으로, 주요 목적은 다음과 같다. 1. 특성 간의 균형 조정 (★★★) 데이터 feature를 특정 범위 값으로 조절하여 feature 크기에 따른 불균형을 조정할 수 있다. 이를 통해 특성의 중요도를 공정하게 해석하여 overfitting을 극복할 수 있다. 이는 특히 거리 기반의 알고리즘(KNN, K-Means Clustering 등)에 있어 특성 간 거리 측정이 더 공정하게 이루어지도록 하여 알고리즘의 정확도와 성능을 향상시킨다. 2. 모델의 수렴 속도 향상 scale을 일치시킴으로서 최적화 알고리즘이 수렴하는 속도를 일정하..